首页> 外文OA文献 >Stochastic Belief Propagation: A Low-Complexity Alternative to the Sum-Product Algorithm
【2h】

Stochastic Belief Propagation: A Low-Complexity Alternative to the Sum-Product Algorithm

机译:随机信念传播:一种低复杂性的替代方案   和积算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The sum-product or belief propagation (BP) algorithm is a widely-usedmessage-passing algorithm for computing marginal distributions in graphicalmodels with discrete variables. At the core of the BP message updates, whenapplied to a graphical model with pairwise interactions, lies a matrix-vectorproduct with complexity that is quadratic in the state dimension $d$, andrequires transmission of a $(d-1)$-dimensional vector of real numbers(messages) to its neighbors. Since various applications involve very largestate dimensions, such computation and communication complexities can beprohibitively complex. In this paper, we propose a low-complexity variant ofBP, referred to as stochastic belief propagation (SBP). As suggested by thename, it is an adaptively randomized version of the BP message updates in whicheach node passes randomly chosen information to each of its neighbors. The SBPmessage updates reduce the computational complexity (per iteration) fromquadratic to linear in $d$, without assuming any particular structure of thepotentials, and also reduce the communication complexity significantly,requiring only $\log{d}$ bits transmission per edge. Moreover, we establish anumber of theoretical guarantees for the performance of SBP, showing that itconverges almost surely to the BP fixed point for any tree-structured graph,and for graphs with cycles satisfying a contractivity condition. In addition,for these graphical models, we provide non-asymptotic upper bounds on theconvergence rate, showing that the $\ell_{\infty}$ norm of the error vectordecays no slower than $O(1/\sqrt{t})$ with the number of iterations $t$ ontrees and the mean square error decays as $O(1/t)$ for general graphs. Theseanalysis show that SBP can provably yield reductions in computational andcommunication complexities for various classes of graphical models.
机译:和积或置信度传播(BP)算法是用于计算具有离散变量的图形模型中的边际分布的广泛使用的消息传递算法。 BP消息更新的核心,当应用于具有成对交互作用的图形模型时,存在矩阵向量乘积,其复杂度在状态维$ d $上是平方的,并且需要传输$(d-1)$维向量实数(消息)发送给其邻居。由于各种应用涉及非常大的尺寸,因此这种计算和通信复杂性可能会非常复杂。在本文中,我们提出了一种低复杂度的BP变体,称为随机信念传播(SBP)。顾名思义,它是BP消息更新的自适应随机版本,其中每个节点将随机选择的信息传递给它的每个邻居。 SBP消息更新在不假设电位的任何特定结构的情况下,将$ d $中的计算复杂度(每次迭代)从二次降低为线性,并且还显着降低了通信复杂性,每个边缘仅需要$ \ log {d} $位传输。此外,我们为SBP的性能建立了许多理论上的保证,表明对于任何树形图以及具有满足收缩性条件的周期的图,它几乎可以肯定地收敛到BP固定点。此外,对于这些图形模型,我们提供了收敛速度的非渐近上限,表明误差向量的$ \ ell _ {\ infty} $范数衰减不慢于$ O(1 / \ sqrt {t})$一般树的迭代次数$ t $和均方误差衰减为$ O(1 / t)$。这些分析表明,对于各种类型的图形模型,SBP可以证明降低了计算和通信复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号